Diagnostics des plasmas produits par ablation laser à une interface liquide-solide.

D. Amans Institut Lumière Matière

@ Fête des Lumières

Contents

me

Interest of laser ablation in liquids

Characteristic time scales in laser ablation

Shock waves

Plasma/liquid interaction and bubble formation

Plasma spectroscopy

Bubble dynamics

Laser ablation in liquids attracts a broad interest

LIBS underwater

Interest: Geological exploration (oil industry) Recognition of archeological materials...

M. López-Claros et al., J. Cultural Heritage 29, 75–81 (2018)

Fenêtre

« Hublot »

Chambre de

collimation

Buse de couplage

Matériau-

Jet hybride

Laser ablation in liquids attracts a broad interest

Injection laser Lentille — Injection eau THP

Thèse de Laurent Weiss, Contribution au développement d'un procédé de découpe laser haute-énergie/ jet d'eau haute-pression couplés. Application à la découpe d'alliages métalliques. Univ. Lorraine 5 juillet 2013

Microfabrication

https://www.sugino.com/site/water-jetand-laser-machine-e/

Laser generation of colloids

<u>Interest</u>: one step process, particles with surface free of ligands, versatile...

[@] Particular GmbH

(Pt, Au, Ag, Al, Cu, Ti)

R. Streubel *et al.*, Opt. Lett. **41**, 1486–1489 (2016).
R Streubel *et al.*, *Nanotechnology* **27**, 205602 (2016).

Laser generation of colloids

Continuous flow setup

Productivity 15 – 40 mg/hour

Equipe Luminescence @ ILM https://ilm.univ-lyon1.fr/luminescence

Characteristic time scales in laser ablation

> Overview

> Molecular dynamics

Laser ablation in liquids

Shadowgraph imaging using a fast camera (210 000 fps)

Characteristic time scales

Shadograph imaging with fast camera

Amans et al., J. Colloid. Interface Sci. 489, 114-125 (2017).

A. Kanitz et al., Plasma Sources Sci. Technol. 28, 103001 (2019).

Original condition:

- High pressure / Laser shock peening
- Fast cooling (a few μs vs. a few tens of μs in air)
- New category of plasma (T_e, N_e)
- Plasma-liquid interaction ?
- Original Cavitation (high Re, We and Ca)

- (1) S. Ibrahimkutty et al., Appl. Phys. Lett. **101**, 103104 (2012) / S. Ibrahimkutty et al., Sci. Rep. **5**, 16313 (2015).
- (2) T. Sakka et al., Spectrochim. Acta, Part B 64, 981 (2009).
- (3) H. Oguchi *et al.*, J. Appl. Phys. **102**, 023306 (2007).
- (4) K. Saito et al., Appl. Surf. Sci. 197, 56 (2002).
- (5) B. Kumar et al., J. Appl. Phys. 108, 064906 (2010).
- (6) K. Hirata et al., Photon Proc. Microelec. Photonics IV, 2005, p. 311.
- (7) T. Tsuji et al., Jpn. J. Appl. Phys. 46, 1533 (2007).
- (8) K. Sasaki et al., Pure Appl. Chem. 82, 1317 (2010).
- (9) T. Tsuji et al., Appl. Surf. Sci. 254, 5224 (2008).
- (10) H. Jin et al., Phys. Chem. Chem. Phys. 12, 5199–5202 (2010).
- (11) Zhu et al., J. Appl. Phys. 89, 2400 (2001)
- (12) B. Kumar et al., J. Appl. Phys. 110, 074903 (2011).
- (13) W. Soliman *et al.*, Appl. Phys. Express **3**, 035201 (2010).
- (14) See bibliography of Tetsuo Sakka @ Kyoto University and Bhupesh Kumar @ Indian Institute of Technology Kanpur,
- (15) J. Lam et al., Phys.Chem.Chem.Phys. 16, 963 (2014)
- (16) A. Matsumoto et al., J. Phys. Chem. C 119, 26506 (2015).
- (17) A. Tamura et al., J. Appl. Phys. 117, 173304 (2015).
- (18) See bibliography of A. Pletch @ Karlsruhe Institute of Technology
- (19) M. Takeuchi and K. Sasaki, Appl. Phys. A 122, 312 (2016).
- (20) J. Lam et al., Appl. Phys. Lett. 108, 074104 (2016)
- (21) T.T.P. Nguyen et al., Appl. Phys. Lett. 102, 124103 (2013) / T.T.P. Nguyen et al., Optics and Laser Technology **100**, 21–26 (2018) See bibliography of T. T. P. Nguyen @Nagaoka Univ. of Technology and then @Institute of Research and Development, Duy Tan Univ.
- (22) Z. Zhang et al., AIP Advances 9, 125048 (2019)
- (23) L. Martí-López et al., Appl. Opt. 48, 3671 (2009)
- (24) M. Domke et al., Appl. Phys A **109**, 409 (2012) / See bibliography of Heinz P. Huber @ Munich University of Applied Sciences (25) A. Kanitz et al., Appl. Surf. Sci. **475**, 204 (2019).
- [25bis] S. Rapp, M. Kaiser, M. Schmidt, H.P. Huber, Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation, Opt.Express 24 (16) (2016) 17572–17592, https://doi.org/10.1364/OE.24.017572.

Non-exhaustive list ! Ask me !

S. K. Sundaram et al., nature materials 1, 217 (2002)

Characteristic time scales in laser ablation

Ag target, 400ps, 600 mJ/cm², box size 50 nm x 50 nm Molten Ag (blue) / Vapor-phase Ag atoms (red)

150-

100-

5.1 ns

4.4 ns

5.8 ns

6.5 ns

7.2 m

instability) from the layer roughened by Rayleigh– Taylor instability

See bibliography of C.-Y. Shih & L. V. Zhigilei @ University of Virginia

Basic question: Why do we observe multimodal size distribution even in flow chamber?

Nano-Gd₂O₃ Several growth processes ? 0.2 µm

No post-processes

"Big" particles: Phase transition of the target (lift-off) ?

"Small" particles: Nucleation and growth from the plasma?

> Shock waves kinetics and pressure measurement

> Fabbro & Berthe's model

Surface waves and elastic modulus measurement

<u>Bibliography:</u> Alfred Vogel (Univ. Lübeck) , Werner Lauterborn (Univ. Göttingen)

Plasma, shock wave, and cavitation bubble produced by Nd:YAG laser pulses of different duration and energy: (a) 30 ps, 50 μJ;

- (b) 30 ps, 1 mJ;
- (c) 6 ns, 1 mJ;
- (d) 6 ns, 10 mJ.

All pictures were taken **44 ns** after the optical breakdown.

<u>A. Vogel, S. Busch, U. Parlitz, Shock wave emission and cavitation bubble generation by</u> picosecond and nanosecond optical breakdown in water, J. Acoust. Soc. Am. 100, 148 (1996).

Shock front kinematics

A. Chemin et al., Appl. Surf. Sci 574, 151592 (2022)

Conservation of momentum at a shock front:

 $p_s - p_{\infty} = \frac{u_s}{u_p} \rho_0$ u_p : particles velocity Hugoniot curve from Rice and Walsh: $u_p = c_1 \left(10^{\frac{u_s - c_0}{c_2}} - 1 \right)$ $c_1 = 5190$ m/s ; $c_2 = 25306$ m/s Valid up to 25 GPa

Relates the initial pressure to the pulse energy : $p_s(MPa) = 10\sqrt{\frac{a}{2a+3}ZI}$ R. Fabbro et al. J. Appl. Phys. 68, 775 (1990)

Origin the observed shock waves ?

water (b) Induced by LcR eaky-Rayleigh wave steel 403L mm

"Mach" cone induced by:

 \rightarrow Critically refracted longitudinal (LCR) wave

→ Surface waves at the interface between the liquid and the target: the leaky-Rayleigh wave

Measurement of elastic modulus (E, v)

Rayleigh's approx.
In vacuum:
$$c_R = c_T \sqrt{\frac{28\nu + 22}{21\nu + 29}}$$

Wave velocities vs elastic modulus For isotropic materials:

$$c_T = \sqrt{\frac{1}{2(1+\nu)}\frac{E}{\rho}}$$
 $c_L = \sqrt{\frac{1-\nu}{(1+\nu)(1-2\nu)}\frac{E}{\rho}}$

A. chemin, M. Fawaz, T. Vidril et D. Amans : « Procédé de mesure d'un module d'élasticité par génération laser d'ondes de surface à une interface matériau/liquide », demande de brevet français n° 2105079 déposée le 14 mai 2021.

Measurement of elastic modulus (E, v)

Depends only on the angles!

A. chemin, M. Fawaz, T. Vidril et D. Amans : « Procédé de mesure d'un module d'élasticité par génération laser d'ondes de surface à une interface matériau/liquide », demande de brevet français n° 2105079 déposée le 14 mai 2021.

Bubble formation

Plasma/liquid interaction and bubble formation

Shock-bag @ ESRF (July 2023)

Cheng-Yu Shih et al., Nanoscale, 2018, 10, 6900

Plasma spectroscopy

> Overview

> Temperatures

LIF measurement

Plasma spectroscopy : measurement of thermodynamic parameters

• Plasma species and time evolution of the chemical composition

atomic / ionic / diatomic molecules

Plasma temperatures

diatomic molecules : $T_{rotational}$, $T_{vibrational}$ Electronic temperature of atoms, ions molecules : T_{elec} (electrons (kinetics) : T_e)

• Electron density (n_e):

Electronic field => Stark effects (broadening and shift)

490

Molecules appear early (with respect to what is observed in gas or vacuum) -> problem for LIBS

Plasma spectroscopy: Electron density

[Review] A. Kanitz et al., Plasma Sources Sci. Technol. (2019)

H. Drawin, Zeitschrift fur Physik, 1969, 228, 99.

J. Lam et al., Phys.Chem.Chem.Phys. 16, 963 (2014)

Plasma spectroscopy: Ro-vibrational spectroscopy

Temperatures:

- Atoms : T_{elec}
- Diatomic molecules : T_{elec} , T_{vib} , T_{rot}

canonical ensemble

 $E = T_n + G_n(v) + F_v(J)$... but $F_v(J)$ Depend on the Hund's case ($\vec{S}, \vec{L}, \vec{N}$ and their projection) Istvan Kovacs (1969)

$$\begin{split} G_n(v) &= w_e \left(v + \frac{1}{2} \right) - w_e x_e \left(v + \frac{1}{2} \right)^2 + w_e y_e \left(v + \frac{1}{2} \right)^3 + \dots \quad (cm^{-1}). \\ F_v(J) &= B_v \cdot J(J+1) - D_v \cdot \left(J(J+1) \right)^2 + \dots + H(J,K,S,\Lambda,\Sigma...) \quad (cm^{-1}) \end{split}$$
 Tabulated

$$I_{n'',v'',J''}^{n',v',J'} = hc \cdot \bar{\nu}_{n'',v',J''}^{n',v',J'} \cdot A_{n'',v'',J''}^{n',v',J'} \cdot N_{n',v',J'} \qquad (W \cdot m^{-3}).$$
 Intensity band strength

Probability of spontaneous transition(s⁻¹) $A^{n',v',J'}_{n'',v'',J''} = A^{n',v'}_{n'',v''} \cdot A^{J'}_{J''}$

Einstein Coefficient
$$A_{n'',v''}^{n',v''} = \frac{1}{4\pi\varepsilon_0} \frac{64\pi^4}{3h(2-\delta_{0,\Lambda'})(2S'+1)} \cdot (100 \cdot \bar{\nu}_{n'',v'',J''}^{n',v',J'})^3 \cdot S_{n'',v''}^{n',v''} \cdot (a_0 e)^2$$

$$N_{n',v',J'} = N_{n'} \cdot \frac{1}{2} \cdot (2J'+1) \cdot \frac{exp\left(-\frac{hc \cdot F_{v'}(J')}{k_B \cdot T_{rot}}\right)}{Q_{rot_{n',v'}}(T_{rot})} \cdot \frac{exp\left(-\frac{hc \cdot G_{n'}(v')}{k_B \cdot T_{vib}}\right)}{Q_{vib_{n'}}(T_{vib})} \stackrel{\text{Po}}{\text{the states}}$$

Population density of the <u>excited state</u>

ILMI INSTITUT LUMIÈRE MATIÈRE

Plasma spectroscopy: Ro-vibrational spectroscopy

Plasma spectroscopy: Temperatures

Plasma spectroscopy: Temperatures

Fast cooling, but what are we really measuring ?

[Review] A. Kanitz et al., Plasma Sources Sci. Technol. (2019)

Plasma imaging

What are we really measuring ?

Emission from "newly" produced molecules ?

J. Lam et al., Spectrochimica Acta Part B 101 (2014) 86–92

Light-induced Fluorescence (LIF)

A. Chemin et al., Spectrochimica Acta Part B: Atomic Spectroscopy 205 (2023) 106685

Light-induced Fluorescence (LIF)

A. Chemin et al., Spectrochimica Acta Part B: Atomic Spectroscopy 205 (2023) 106685

Light-induced Fluorescence (LIF)

A. Chemin et al., Spectrochimica Acta Part B: Atomic Spectroscopy 205 (2023) 106685

Collisionally induced fluorescence contribution in blue (LCIF) Direct fluorescence contribution in magenta (DLIF)

A. Chemin et al., Spectrochimica Acta Part B: Atomic Spectroscopy 205 (2023) 106685

Light-induced Fluorescence (LIF)

Vs.

LIF

@30 μ s : $T_{X^2\Sigma^+} = 3150 \text{ K}$ (SD = 552 K) Temperature interval for a confidence level of 70% (two-sided) is ±67 K.

@5µs : $T_{X^2\Sigma^+} = 3700 \text{ K}$ (SD = 5302 K) Temperature interval for a confidence level of 70% (two-sided) is ±64 K. **Plasma emission**

 $T_{B^{2}\Sigma^{+}}^{rot} =$ 3130 ± 100 K (70%).

$$T^{rot}_{B^2\Sigma^+}=$$
 3850 ± 100 K (70%)

Bubble dynamics

> Imaging of laser-generated bubbles in solvents of low viscosity

- > Rayleigh-Plesset equation
- Gilmore model
- > Bubbles in highly viscous liquids

Bubble dynamics

J. Lam et al., Appl. Phys. Lett. 108, 074104 (2016)

Bubble dynamics

Rayleigh-Plesset (RP) equation

Derive from Navier–Stokes equations in spherical coordinates, assuming a Newtonian fluid, **incompressible**

$$R\ddot{R} + \frac{3}{2}\dot{R}^{2} = \frac{1}{\rho} \left[P_{B}(t) - P_{l} - \frac{2\sigma}{R} - \frac{4\eta\dot{R}}{R} \right]$$

Relative contribution of each term :

R
$$\approx$$
1 mm, t \approx 300 µs, $\sigma_{\rm w} \approx$ 0,1 N/m , $\rho_{\rm w} \approx$ 1 g/cm³, $\eta_{\rm w} \approx$ 10⁻³ Pa.s

Weber number
$$We =
ho \dot{R}^2 R / \sigma \simeq 1 imes 10^2$$
.
Reynolds number ${\cal R}e =
ho \dot{R}R / \eta \simeq 3 imes 10^3$

The surface motion of the bubble is driven by inertial forces

Simplified Rayleigh-Plesset (RP) equation for purely inertial dynamics

$$\rho(R\ddot{R} + \frac{3}{2}\dot{R}^2) = P_B(t) - P_l$$

 σ fluid surface tension ρ liquid mass density η dynamic viscosity

Isentropic process ! Model prediction Literature value 1.3 Radius R [mm] 0.5 1.5 ° 1.2 ° 0/d 0 1.1 ° 1.0 5 100 $=\frac{C_0}{R^{3\gamma}}$ 4 $P_B(t)$ Pressure P [Bar] 3 In(P) [Bar] 0 Eth. Water Iso. 2 Number of 1 vapor molecules 10¹⁸ growth -, and shrinking - in water T_c= 514K 647K 509K 0 growth \blacktriangle , and shrinking \vartriangle in ethanol 10¹⁷ growth •, and shrinking • in isopropanol -1 10¹⁶ -2 -3 -1 In(R³) [mm³] 10¹⁵ Adiabatic? Abl. Eth. Wa. Iso. $R \approx 1 \text{ mm}, h \approx 100 \text{ W/m}^2/\text{K}, T_c \approx 650 \text{ K}$ $\Phi = h\Delta T (\pi R^2 + 2\pi R^2) \approx 0.33 \text{ W}$ Vapor mainly composed of solvent molecules (25% pulse energy) 300 µs 0,1 mJ

INSTITUT

LUMIÈRE

Bubble dynamics

But the <u>Rayleigh-Plesset</u> (RP) model can't explain the damping of the bubble oscillation ... we need to account the compressibility **→** <u>Gilmore model</u>

<u>Computes</u>: R(t), $P_B(t)$ and the pressure distribution in the surrounding liquid.

<u>Considers</u>: liquid <u>compressibility</u>, viscosity and surface tension.

Assumes: a constant gas content of the bubble, neglecting evaporation, condensation, gas diffusion through the bubble wall, and heat conduction. *Gas content variation during the collapse is arbitrary added*

State equation: Tait's equation

$$\frac{P+B}{p_{\infty}+B} = \left(\frac{\rho}{\rho_0}\right)^n \quad \text{Water: B} = 314 \text{ MPa, n=7}$$

A. Vogel et al., J. Acoust. Soc. Am. 100, 148 (1996).

S. Barcikowski et al., MRS BULLETIN 44, 382 (2019)

But the <u>Rayleigh-Plesset</u> (RP) model can't explain the damping of the bubble oscillation ... we need to account the compressibility \rightarrow <u>Gilmore model</u>

$$\begin{split} \dot{U} &= \left[-\frac{3}{2} \left(1 - \frac{U}{3C} \right) U^2 + \left(1 + \frac{U}{C} \right) H \right. \\ &+ \frac{U}{C} \left(1 - \frac{U}{C} \right) R \left. \frac{dH}{dR} \right] \cdot \left[R \left(1 - \frac{U}{C} \right) \right]^- \end{split}$$

R bubble radius, U=dR/dt is the bubble wall velocity, C speed of sound in the liquid at the bubble wall, H enthalpy difference between the liquid at pressure P(R) at the bubble wall and at hydrostatic pressure p_{∞}

$$H = \int_{p_{\infty}}^{P(R)} \frac{dp}{\rho} \quad p \text{ and } \rho \text{ are the pressure and the} \\ \text{density within the liquid}$$

The pressure *P* at the bubble wall is given by

$$P = \left(p_{\infty} + \frac{2\sigma}{R_n}\right) \left(\frac{R_n}{R}\right)^{3\kappa} - \frac{2\sigma}{R} - \frac{4\mu}{R} U$$

by

 κ the ratio of the specific heat P is uniform in the bubble.

 R_n equilibrium radius (P = P_{hydro}) R_n "measure" of the gas content

$$C = (c_0^2 + (n-1)H)^{1/2},$$

$$H = \frac{n(p_\infty + B)}{(n-1)\rho_0} \left[\left(\frac{P+B}{p_\infty + B} \right)^{(n-1)/n} - 1 \right]$$

A. Vogel et al., J. Acoust. Soc. Am. 100, 148 (1996).

Assuming Tait's equation

Ablation in viscous liquids : poly-alpha-olefin (PAO)

Huge capillary number $C_a = \frac{\rho v V_{cl}}{\sigma} > 100$, the contribution of the viscous forces to the friction drastically increases. The Rayleigh-Plesset and Gilmore are no more appropriate

T. Hupfeld et al., J. Appl. Phys. 127, 044306 (2020)

Direct resolution of the continuity and Navier-Stokes equations (Finite volume method, *OpenFOAM* open source software @ https://www.openfoam.com/)

Bubble dynamics

Conclusion

Thermodynamic parameters

D. Amans et al., Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis, J. Colloid Inter. Sci. 489, 114-125 (2017).

Acknowledgement

Institut Lumière Matière (ILM), Univ. Lyon 1 / CNRS, France

Collaborators: Abdul-Rahman Allouche, Gilles Ledoux, Samy Mérabia, Vincent Motto-Ros, Christophe Dujardin, Amanda Ross, Sylvain Hermelin, Patrick Crozet. PhD students: Julien Lam, Mouhamed Diouf, Gaetan Laurens, Arsène Chemin