
Caractérisation électrique et optique d'une décharge de Townsend à pression atmosphérique en CO₂

C. Bajon¹, S. Dap¹, A. Belinger¹, O. Guaitella², T. Hoder³, N. Naudé¹

mél: cbajon@laplace.univ-tlse.fr

Face aux enjeux de réduction des émissions de gaz à effet de serre, les études de conversion du CO₂ ont gagner en intérêt. Par exemple, des travaux proposent de créer de l'oxygène à partir du CO₂ présent dans l'atmosphère Martien ou encore de convertir le CO₂ pour produire des carburants [1].

Dans ce cadre, les plasmas hors équilibre, et particulièrement les décharges à barrière diélectrique (DBDs), constituent un moyen intéressant pour induire une chimie dans un gaz et ainsi, dissocier la molécule de CO₂. Généralement, à la pression atmosphérique ces décharges fonctionnent en régime filamentaire. Cependant, sous certaines conditions il est possible d'obtenir des décharges diffuses en N₂ ou dans l'air [2,3]. Dans un article récent [4], nous avons montré qu'il est également possible d'obtenir une décharge diffuse en CO₂. Des études électrique et optique ont permis de montrer que cette décharge fonctionne en régime de Townsend. En effet, l'oscillogramme de la décharge Figure 1-a présente des caractéristiques similaires à une décharge de Townsend obtenue à la pression atmosphérique (APTD) en N₂ [5]. De plus, l'imagerie rapide de la décharge Figure 1-b montre une lueur plus intense du côté de l'anode ce qui est caractéristique de ce type de décharge. Une étude approfondie des spectres d'émission optique obtenus dans la gamme UV-Visible, en régime diffus et filamentaire, est réalisée. Ces travaux ouvrent la voie à une meilleure compréhension des mécanismes de dissociation et d'excitation des décharges en CO₂, en apportant de nouvelles données obtenues pour des conditions différentes en termes de champ réduits E/n, puissance et énergie.

Figure 1: Oscillogramme **a)** et image iCCD **b)** (temps d'exposition = demi-période) d'une décharge diffuse en CO₂ (gap gazeux = 1 mm).

Références

- [1] P. Ogloblina et al., Plasma Sources Science and Technology 30 (2021)
- [2] N. Osawa et al., Eur. Phys. J. Appl. Phys. 61 24317 (2013)
- [3] F. Massines et al., Eur. Phys. J. Appl. Phys. 47 22805 (2009)
- [4] C. Bajon et al., Plasma Sources Sci. Technol. 32 045012 (2023)
- [5] C. Tyl et al., Journal of Physics D: Applied Physics 51 (2018)

¹ LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

² Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, F-91128, Palaiseau Cedex, France

³ Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic